skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lippi, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Isotopic measurements of Solar System bodies provide a primary paradigm within which to understand the origins and histories of planetary materials. The deuterium-to-hydrogen (D/H) ratio, in particular, helps reveal the relationship between (and heritage of) di erent H2O reservoirs within the Solar System. Here we present interferometric maps of water (H2O) and semiheavy water (HDO) in the gas-phase coma of a comet (Halley-type comet 12P/Pons–Brooks), obtained using the Atacama Large Millimeter/ submillimeter Array. The maps are consistent with outgassing of both H2O and HDO directly from the nucleus, and they imply a coma D/H ratio (for water) of (1.71 ± 0.44) × 10−4. This is at the lower end of the range of previously observed values in comets and is consistent with D/H in Earth’s ocean water. Our results indicate a possible common heritage between a component of the water ice reservoir in the Oort cloud and the water that was delivered to the young Earth during the early history of the Solar System 
    more » « less
    Free, publicly-accessible full text available August 8, 2026